Two Modifications of Cobalt Dipotassium Tetrachloride

By W.J. Vermin, G.C.Verschoor and D.J. W.IJdo
Gorlaeus Laboratories, Solid State Chemistry and X-ray and Electron Diffraction Sections, University of Leiden, P.O. Box 75, Leiden, The Netherlands

(Received 10 May 1976; accepted 31 May 1976)

Abstract

High-temperature $\mathrm{K}_{2} \mathrm{CoCl}_{4}$: orthorhombic, $a=26 \cdot 838$ (3), $b=12 \cdot 406$ (1), $c=7 \cdot 262$ (1) \AA, space group Pna2 $1, Z=12$, adopts a slightly modified $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure. Low-temperature $\mathrm{K}_{2} \mathrm{CoCl}_{4}$: monoclinic, $a=6.801$ (1), $b=9.569$ (1), $c=12.757$ (1) \AA, $\beta=107 \cdot 0$ (1) ${ }^{\circ}$, space group $P 2_{1} / c, Z=4$, adopts a strongly distorted $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure.

Introduction. The structure determination of $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ is part of an investigation of structural relationships and magnetic properties of ternary halides $\mathrm{A}_{x} \mathrm{~B}_{y} \mathrm{X}_{z}$ with A an alkali metal, B a first-row transition element or an alkaline-earth metal and $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I .

The phase diagram of the system $\mathrm{KCl}-\mathrm{CoCl}_{2}$ was constructed by Seifert (1961). Apart from $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ (m.p. $436^{\circ} \mathrm{C}$) it shows another compound, KCoCl_{3}, but not the phase transition we observe for $\mathrm{K}_{2} \mathrm{CoCl}_{4}$. By melting stoichiometric amounts of KCl and CoCl_{2} in an evacuated quartz tube and annealing the mixture at $400^{\circ} \mathrm{C}$ for one week, the orthorhombic modification of $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ is obtained. After a few months this phase changes at room temperature into the monoclinic modification. The former is again obtained after annealing the latter at $400^{\circ} \mathrm{C}$. The two phases are easily recognized by their X-ray powder diagrams. We were unable to measure the transition temperature by means of DTA, but visual inspection of samples after heating suggests a phase transition between 350 and $360^{\circ} \mathrm{C}$.

Lamotte \& Vermeire (1975) report that powder diffractograms of $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ and $\left(\mathrm{NH}_{4}\right)_{2 n C l} \mathrm{ZnCl}_{4}$ can be indexed on the basis of an orthorhombic cell with axes $a=8.90, b=12.39$ and $c=7.25(\AA)$ for $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ and $a=9 \cdot 20, b=12 \cdot 56$ and $c=7 \cdot 17(\AA)$ for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZnCl}_{4}$. In both cases our diagrams show powder lines between $d=3.47$ and $3.51 \AA$, which cannot be indexed with these cell parameters. On tripling the a parameter these reflexions can be indexed as 202, 231 and 112. Klug \& Sears (1945) also report a tripled a parameter for $\mathrm{K}_{2} \mathrm{ZnCl}_{4}$, based on single-crystal measurements.

Dry KCl was obtained by heating in vacuo at $400^{\circ} \mathrm{C}$, and dry CoCl_{2} by heating $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ in a stream of dry HCl gas at $400^{\circ} \mathrm{C}$. Low- and high-temperature $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ were obtained by melting a stoichiometric mixture of KCl and CoCl_{2} in an evacuated sealed quartz tube and slowly lowering the temperature over the course of a few days to room temperature with a temperature gradient of about $50^{\circ} \mathrm{C}$, with the higher temperature at the top of the melt. All manipulations of
$\mathrm{K}_{2} \mathrm{CoCl}_{4}$ were carried out in a glovebox filled with dry N_{2} or under dry paraffin oil. The crystallized blue material was broken into pieces and crystals were selected. A series of Weissenberg photographs showed some crystals with orthorhombic and some with monoclinic symmetry. One suitable crystal of each phase was collected and measured by means of an Enraf-Nonius three-circle single-crystal diffractometer. Intensities were recorded by the $\theta-2 \theta$ scan method for all reflexions with 0 between 3 and 30°.

Monochromatic (graphite) Mo $K \alpha$ radiation was used for measuring the intensities. Background intensities were determined at $0 \pm \frac{1}{2} \Delta^{\circ}$, with $\Delta=0 \cdot 7+1 \cdot 3$ $\tan \theta^{\circ}$. The mean counting time was 25 s for each background and 50 s for the scan. Standard deviations were calculated from counting statistics. Absorption corrections were applied with a computer program written by de Graaff (1973), and new standard deviations (σ_{F}) were calculated taking into account the inaccuracy of the absorption correction and attenuation factors of the filters used. Non-equivalent significant reflexions were reduced to F values and Wilson plots were calculated, yielding approximate values for the scale factors and overall isotropic temperature parameters, B. Table 1 gives the crystal and diffraction data.
According to the reflexion conditions for orthorhombic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$, another space group (Pnam) is possible, which the Patterson synthesis proved to be incorrect.

Table 1. Crystal and diffraction data for $\mathrm{K}_{2} \mathrm{CoCl}_{4}$

	Orthorhombic	Monoclinic
a	26.838 (3) \AA	6.801 (1) \AA
b	$12 \cdot 406$ (1)	9.569 (1)
c	$7 \cdot 262$ (1)	12.757 (1)
β		107.0 (1) ${ }^{\text {c }}$
Z	12	4
Space group	$\mathrm{Pna2}_{1}$	$P 2_{1} / \mathrm{c}$
Measured reflexions	7502	3447
Independent reflexions	4017	2447
Significant reflexions	2141	1655
Reflexion conditions	$\begin{aligned} & 0 k l: k+l=2 n \\ & h 0 l: h=2 n \end{aligned}$	$\begin{aligned} & h 0 l: l=2 n \\ & 0 k 0: k=2 n \end{aligned}$
Absorption coefficient (μ)	$44.1 \mathrm{~cm}^{-1}$	$44.8 \mathrm{~cm}^{-1}$
Transmission factor	0.35-0.68	0.54-0.68
Crystal dimensions	$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$	$0.15 \times 0.14 \times 0.1 \mathrm{~mm}$

Table 2. Positional parameters ($\times 10^{4}$) and anisotropic thermal parameters ($\times 10^{3}$) for orthorhombic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$

	x	y	z	U_{11}	U_{22}	U_{33}	$2 U_{21}$	$2 U_{23}$	$2 U_{31}$
K(1)	442 (1)	808 (3)	7879 (7)	36 (2)	78 (3)	92 (3)	-16(3)	-10 (6)	-6 (4)
K(2)	3801 (1)	836 (4)	7662 (7)	41 (2)	98 (3)	74 (3)	2 (4)	-8(5)	21 (4)
K(3)	7110 (1)	822 (3)	7246 (7)	33 (2)	63 (2)	71 (2)	-5 (3)	-8(5)	-11(3)
K(4)	3322 (1)	6883 (2)	7249 (5)	38 (1)	33 (2)	57 (2)	3 (2)	0 (3)	11 (3)
K(5)	6663 (1)	6872 (2)	7428 (5)	38 (1)	35 (2)	60 (2)	-4 (2)	4 (3)	-8(3)
K(6)	9991 (1)	6884 (2)	7954 (5)	37 (1)	30 (2)	36 (1)	-3(2)	10 (3)	6 (3)
$\mathrm{Co}(1)$	720 (1)	4199 (2)	7500*	23 (1)	30 (1)	30 (1)	3 (1)	-2 (2)	0 (1)
$\mathrm{Co}(2)$	4051 (1)	4178 (2)	7800 (3)	25 (1)	26 (1)	34 (1)	1 (1)	2 (2)	2 (1)
$\mathrm{Co}(3)$	7402 (1)	4181 (2)	7351 (1)	28 (1)	27 (1)	27 (1)	-4 (1)	-4 (2)	1 (1)
$\mathrm{Cl}(1)$	9917 (1)	4445 (2)	6752 (5)	29 (1)	49 (2)	47 (2)	11 (2)	-24 (3)	- 10 (3)
$\mathrm{Cl}(2)$	1132 (1)	5755 (2)	8166 (5)	34 (1)	31 (2)	78 (2)	-18(2)	-10(4)	13 (3)
$\mathrm{Cl}(3)$	839 (1)	3017 (2)	9836 (5)	61 (2)	52 (2)	43 (2)	44 (2)	37 (3)	10 (3)
$\mathrm{Cl}(4)$	1105 (1)	3549 (3)	4941 (5)	38 (1)	75 (2)	35 (2)	18 (3)	-37 (3)	4 (3)
$\mathrm{Cl}(5)$	3228 (1)	4385 (2)	8170 (7)	23 (1)	58 (2)	94 (3)	-1 (2)	33 (4)	-4 (3)
$\mathrm{Cl}(6)$	4449 (1)	5778 (3)	8139 (8)	43 (2)	31 (2)	157 (4)	-28 (3)	-6 (5)	-2 (5)
$\mathrm{Cl}(7)$	4341 (1)	3074 (4)	18 (7)	65 (2)	115 (3)	56 (3)	83 (4)	89 (5)	11 (4)
$\mathrm{Cl}(8)$	4299 (1)	3475 (3)	5147 (5)	104 (3)	101 (3)	42 (2)	112 (5)	-47 (5)	-5 (4)
$\mathrm{Cl}(9)$	6589 (1)	4351 (2)	8077 (5)	27 (1)	60 (2)	84 (3)	-3 (2)	40 (4)	21 (3)
$\mathrm{Cl}(10)$	7798 (1)	5752 (3)	6690 (7)	42 (2)	38 (2)	61 (2)	- 20 (3)	9 (4)	-8 (3)
$\mathrm{Cl}(11)$	7778 (1)	3606 (3)	21 (5)	56 (2)	54 (2)	37 (2)	15 (3)	14 (3)	-25 (3)
$\mathrm{Cl}(12)$	7555 (1)	2935 (2)	5178 (7)	68 (2)	46 (2)	38 (2)	8 (3)	- 26 (3)	5 (3)

* This value was kept fixed during the refinements.

Table 3. Positional parameters ($\times 10^{4}$) and anisotropic thermal parameters ($\times 10^{4}$) for monoclinic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$

	x	y	z	U_{11}	U_{22}	U_{33}	$2 U_{21}$	$2 U_{23}$	$2 U_{31}$
K(1)	2247 (3)	8555 (1)	4935 (1)	475 (9)	356 (7)	379 (7)	126 (13)	-99 (11)	-82 (13)
K(2)	4036 (3)	961 (1)	1646 (1)	548 (10)	364 (6)	418 (7)	-25 (13)	- 143 (11)	394 (14)
Co	1169 (1)	3537 (1)	3197 (1)	297 (4)	278 (3)	199 (3)	- 27 (7)	-2 (6)	127 (6)
$\mathrm{Cl}(1)$	2131 (3)	3997 (1)	1660 (1)	389 (9)	381 (7)	235 (6)	27 (13)	106 (10)	210 (12)
$\mathrm{Cl}(2)$	2252 (3)	6884 (1)	7210 (1)	303 (8)	402 (7)	413 (8)	-74 (13)	- 164 (12)	152 (14)
$\mathrm{Cl}(3)$	3011 (3)	1626 (1)	3998 (2)	478 (10)	436 (8)	408 (8)	205 (15)	328 (14)	196 (15)
$\mathrm{Cl}(4)$	2061 (3)	5403 (1)	4324 (1)	731 (13)	375 (8)	327 (7)	- 285 (16)	-239 (12)	395 (16)

Table 4. Distances and angles in orthorhombic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$
Cobalt-chlorine distances (\AA)

$\mathrm{Co}(1)-\mathrm{Cl}(1)$	$2.243(4)$
$\mathrm{Co}(1)-\mathrm{Cl}(2)$	$2.277(4)$
$\mathrm{Co}(1)-\mathrm{Cl}(3)$	$2.265(4)$
$\mathrm{Co}(1)-\mathrm{Cl}(4)$	$2.274(4)$

$\mathrm{Co}(2)-\mathrm{Cl}(5)$	$2 \cdot 240(3)$
$\mathrm{Co}(2)-\mathrm{Cl}(6)$	$2 \cdot 267(4)$
$\mathrm{Co}(2)-\mathrm{Cl}(7)$	$2 \cdot 253(5)$
$\mathrm{Co}(2)-\mathrm{Cl}(8)$	$2 \cdot 217(5)$

$\mathrm{Co}(3)-\mathrm{Cl}(9)$	$2 \cdot 254(4)$
$\mathrm{Co}(3)-\mathrm{Cl}(10)$	$2 \cdot 271(4)$
$\mathrm{Co}(3)-\mathrm{Cl}(11)$	$2 \cdot 299(4)$
$\mathrm{Co}(3)-\mathrm{Cl}(12)$	$2 \cdot 247(4)$

Cobalt-chlorine angles $\left({ }^{\circ}\right)$

$\mathrm{Cl}(1)-\mathrm{Co}(1)-\mathrm{Cl}(2)$	$113 \cdot 8(2)$
$\mathrm{Cl}(1)-\mathrm{Co}(1)-\mathrm{Cl}(3)$	$113 \cdot 9(2)$
$\mathrm{Cl}(1)-\mathrm{Co}(1)-\mathrm{Cl}(4)$	$106 \cdot 7(2)$
$\mathrm{Cl}(2)-\mathrm{Co}(1)-\mathrm{Cl}(3)$	$108 \cdot 7(2)$
$\mathrm{Cl}(2)-\mathrm{Co}(1)-\mathrm{Cl}(4)$	$104 \cdot 7(2)$
$\mathrm{Cl}(3)-\mathrm{Co}(1)-\mathrm{Cl}(4)$	$108 \cdot 6(2)$
Potassium-chlorine distances (\AA) up to $4 \cdot 1 \AA$	

$\mathrm{K}(1)-\mathrm{Cl}(9)$	3.089 (4)	$\mathrm{K}(2)-\mathrm{Cl}(1)$	3.086 (4)	$\mathrm{K}(3)-\mathrm{Cl}(5)$	3.087 (4)
$\mathrm{K}(1)-\mathrm{Cl}(3)$	$3 \cdot 267$ (5)	$\mathrm{K}(2)-\mathrm{Cl}(2)$	$3 \cdot 272$ (6)	$\mathrm{K}(3)-\mathrm{Cl}(11)$	$3 \cdot 203$ (6)
$\mathrm{K}(1)-\mathrm{Cl}(6)$	3.318 (8)	$\mathrm{K}(2)-\mathrm{Cl}(4)$	$3 \cdot 294$ (6)	$\mathrm{K}(3)-\mathrm{Cl}(10)$	3.238 (7)
$\mathrm{K}(1)-\mathrm{Cl}(8)$	$3 \cdot 402$ (6)	$\mathrm{K}(2)-\mathrm{Cl}(11)$	$3 \cdot 311$ (5)	$\mathrm{K}(3)-\mathrm{Cl}(12)$	$3 \cdot 249$ (5)
$\mathrm{K}(1)-\mathrm{Cl}(6)$	3.455 (8)	$\mathrm{K}(2)-\mathrm{Cl}(10)$	$3 \cdot 410$ (5)	$\mathrm{K}(3)-\mathrm{Cl}(4)$	$3 \cdot 269$ (5)
$\mathrm{K}(1)-\mathrm{Cl}(7)$	3.613 (6)	$\mathrm{K}(2)-\mathrm{Cl}(7)$	$3 \cdot 569$ (7)	$\mathrm{K}(3)-\mathrm{Cl}(2)$	$3 \cdot 341$ (5)
$\mathrm{K}(1)-\mathrm{Cl}(8)$	3.758 (6)	$\mathrm{K}(2)-\mathrm{Cl}(8)$	3.980 (6)	$\mathrm{K}(3)-\mathrm{Cl}(10)$	4.043 (7)
$\mathrm{K}(1)-\mathrm{Cl}(6)$	$3 \cdot 831$ (8)	$\mathrm{K}(2)-\mathrm{Cl}(2)$	4.002 (6)		
		$\mathrm{K}(2)-\mathrm{Cl}(12)$	4.095 (6)		
$\mathrm{K}(4)-\mathrm{Cl}(3)$	$3 \cdot 180$ (5)	$\mathrm{K}(5)-\mathrm{Cl}(11)$	$3 \cdot 153$ (5)	$\mathrm{K}(6)-\mathrm{Cl}(7)$	$3 \cdot 153$ (6)
$\mathrm{K}(4)-\mathrm{Cl}(5)$	$3 \cdot 180$ (4)	$\mathrm{K}(5)-\mathrm{Cl}(9)$	$3 \cdot 169$ (4)	$\mathrm{K}(6)-\mathrm{Cl}(1)$	$3 \cdot 156$ (4)
$\mathrm{K}(4)-\mathrm{Cl}(12)$	$3 \cdot 182$ (6)	$\mathrm{K}(5)-\mathrm{Cl}(12)$	$3 \cdot 181$ (6)	$\mathrm{K}(6)-\mathrm{Cl}(8)$	$3 \cdot 173$ (5)
$\mathrm{K}(4)-\mathrm{Cl}(4)$	$3 \cdot 234$ (5)	$\mathrm{K}(5)-\mathrm{Cl}(7)$	$3 \cdot 216$ (6)	$\mathrm{K}(6)-\mathrm{Cl}(3)$	3.179 (5)
$\mathrm{K}(4)-\mathrm{Cl}(10)$	$3 \cdot 280$ (5)	$\mathrm{K}(5)-\mathrm{Cl}(8)$	3.281 (5)	$\mathrm{K}(6)-\mathrm{Cl}(1)$	$3 \cdot 222$ (5)
$\mathrm{K}(4)-\mathrm{Cl}(6)$	$3 \cdot 382$ (5)	$\mathrm{K}(5)-\mathrm{Cl}(2)$	$3 \cdot 315$ (4)	$\mathrm{K}(6)-\mathrm{Cl}(6)$	$3 \cdot 248$ (5)
$\mathrm{K}(4)-\mathrm{Cl}(9)$	$3 \cdot 403$ (5)	$\mathrm{K}(5)-\mathrm{Cl}(10)$	$3 \cdot 390$ (4)	$\mathrm{K}(6)$ - $\mathrm{Cl}(4)$	$3 \cdot 319$ (4)
$\mathrm{K}(4)-\mathrm{Cl}(11)$	$3 \cdot 421$ (5)	$\mathrm{K}(5)-\mathrm{Cl}(5)$	$3 \cdot 476$ (6)	$\mathrm{K}(6)-\mathrm{Cl}(2)$	$3 \cdot 371$ (4)

All calculations were carried out on the Leiden University $360-65$ (and later 370-158) IBM computer, with a set of computer programs written or modified by Rutten-Keulemans and de Graaff. Scattering factors and anomalous dispersion for the ions were taken from International Tables for X-ray Crystallography (1974). The function minimized during the least-squares refinement was $\sum w_{F}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ using the weighting scheme $w_{F}=1 / \sigma_{F}^{2} \cdot R_{w}$ is defined by $\left[\sum_{F} w_{F}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} /\right.$ $\left.\sum_{F} w_{F} F_{o}^{2}\right]^{1 / 2}$ and R by $\sum_{F}\left(\left|F_{o}\right|-\left|F_{c}\right|\right) / \sum_{F} F_{o}$.

Orthorhombic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$: Interpretation of the threedimensional Patterson synthesis proved to be a difficult task, because of the superstructure in the a direction. Only the Co ions could be unequivocally determined. The K ions and one Cl tetrahedron were allocated assuming that the structure resembled the $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure. After a few cycles of least-squares refinement R_{w} dropped to 0.4 . The remaining atoms could be found by calculating minimum functions and threedimensional Fourier maps. With isotropic temperature factors and full-matrix refinement, R_{w} dropped to $0 \cdot 1$. R_{w} dropped to 0.039 and R to 0.038 after full-matrix refinement with anisotropic temperature factors. Refinement of the inverted structure results in a somewhat higher $R_{w}(0.040)$. A difference Fourier synthesis revealed no significant peaks. Positional parameters and anisotropic thermal parameters are listed in Table 2.*

Monoclinic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$: From a three-dimensional Patterson synthesis the positions of the Co , all the Cl and one of the K ions could be determined. These positions, isotropic temperature parameters and blockdiagonal matrix refinement were used to reduce R_{w} to $0 \cdot 32$. With a Fourier synthesis the other K position could be determined and R_{w} dropped to 0.08 with isotropic temperature factors and block-diagonal refinement. R_{w} fell to $0.041(R=0.051)$ after full-matrix refinement with anisotropic temperature factors. A difference Fourier synthesis revealed no significant peaks. The positional parameters and the anisotropic temperature factors are listed in Table 3.*

Discussion. Tables 4 and 5 show $\mathrm{Co}-\mathrm{Cl}$ distances and angles and $\mathrm{K}-\mathrm{Cl}$ distances for orthorhombic and monoclinic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ respectively.

Idealized orthorhombic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ axes can be derived from $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ axes (Pnam setting) by the following transformation:

$$
\left(\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

where a, b and c are the axes of $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$, and a^{\prime}, b^{\prime} and c^{\prime} are the axes of idealized orthorhombic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$.

[^0]Table 5. Distances and angles in monoclinic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$

Cobalt-chlorine distances (\AA)			
$\mathrm{Co}-\mathrm{Cl}(1)$	$2.284(2)$	$\mathrm{Co}-\mathrm{Cl}(3)$	$2.283(2)$
$\mathrm{Co}-\mathrm{Cl}(2)$	$2.267(2)$	$\mathrm{Co}-\mathrm{Cl}(4)$	$2.261(2)$

Cobalt-chlorine angles (${ }^{\circ}$)

$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2)$	$111 \cdot 74(6)$	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(3)$	$106.34(7)$
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(4)$	$107.65(6)$	$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{Cl}(3)$	$110.63(6)$
$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{Cl}(4)$	$110.61(7)$	$\mathrm{Cl}(3)-\mathrm{Co}-\mathrm{Cl}(4)$	$109.73(6)$

$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{Cl}(4) \quad 110.61$ (7)
$\mathrm{Cl}(3)-\mathrm{Co}-\mathrm{Cl}(4) \quad 109.73$ (6)
Potassium-chlorine distances (\AA) up to $3.5 \AA$

$\mathrm{K}(1)-\mathrm{Cl}(1)$	$3 \cdot 105(2)$	$\mathrm{K}(2)-\mathrm{Cl}(2)$	$3 \cdot 148(2)$
$\mathrm{K}(1)-\mathrm{Cl}(4)$	$3 \cdot 109(2)$	$\mathrm{K}(2)-\mathrm{Cl}(4)$	$3 \cdot 155(2)$
$\mathrm{K}(1)-\mathrm{Cl}(3)$	$3 \cdot 117(2)$	$\mathrm{K}(2)-\mathrm{Cl}(1)$	$3 \cdot 183(2)$
$\mathrm{K}(1)-\mathrm{Cl}(1)$	$3 \cdot 230(2)$	$\mathrm{K}(2)-\mathrm{Cl}(2)$	$3 \cdot 255(2)$
$\mathrm{K}(1)-\mathrm{Cl}(3)$	$3 \cdot 270(2)$	$\mathrm{K}(2)-\mathrm{Cl}(4)$	$3.284(3)$
$\mathrm{K}(1)-\mathrm{Cl}(2)$	$3 \cdot 313(2)$	$\mathrm{K}(2)-\mathrm{Cl}(3)$	$3.334(2)$
$\mathrm{K}(1)-\mathrm{Cl}(2)$	$3 \cdot 503(2)$	$\mathrm{K}(2)-\mathrm{Cl}(1)$	$3 \cdot 421(2)$

The CoCl_{4} tetrahedra and K ions are more irregularly distributed than the SO_{4} tetrahedra and K ions in $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$; this results in lower coordination numbers for the K ions (nine and ten in $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$). This effect is commonly observed in $\mathrm{K}_{2} \mathrm{SO}_{4}$-like structures. $\mathrm{K}(1)$, $\mathrm{K}(2)$ and $\mathrm{K}(3)$ are in irregular six coordination; $\mathrm{K}-\mathrm{Cl}$ distances range from 3.089 to $3.613 \AA$ (mean $3 \cdot 304 \AA) . K(4), K(5)$ and $K(6)$ are surrounded by Cl ions at the apices of an Archimedian antiprism. K-Cl distances range from 3.152 to 3.476 (\AA) (mean $3.261 \AA$), and the $\mathrm{Co}-\mathrm{Cl}$ distances from 2.217 to $2.299 \AA$ (mean $2 \cdot 259 \AA$ A).

Idealized monoclinic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ axes can be derived from $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ axes (Pnam setting) by the following transformation:

$$
\left(\begin{array}{c}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & \overline{1}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

where a^{\prime}, b^{\prime} and c^{\prime} are the axes of idealized monoclinic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$, and a, b and c are the axes of $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$. In $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}, b / c$ is almost $\downarrow 3$; thus the idealized angle β in monoclinic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ is 120°. The tetrahedra are rotated more than in orthorhombic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ and are moved along with the K ions, resulting in an irregular seven coordination for $\mathrm{K} ; \mathrm{K}-\mathrm{Cl}$ distances range from 3.105 to $3.503 \AA$ (mean $3.245 \AA$), and the $\mathrm{Co}-\mathrm{Cl}$ distances from $2 \cdot 261$ to $2 \cdot 284 \AA$ (mean $2 \cdot 274 \AA$). We are not aware of other compounds with the same structure as monoclinic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$. In both cases the anisotropic

Table 6. Some compounds with $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$-like structures

	Space group	$a(\AA)$	$b(\AA)$	$c(\AA)$	β
$\mathrm{K}_{2} \mathrm{SO}_{4}{ }^{(a)}$	Pnma	7.456	5.776	10.08	
$\mathrm{~K}_{2} \mathrm{CoCl}_{4}{ }^{(b)}$	$P n a 2_{1}$	26.838	12.406	7.261	
$\mathrm{~K}_{2} \mathrm{CoCl}_{4}{ }^{(b)}$	$P 2_{1} / c$	6.801	9.569	12.757	$107 \cdot 0^{\circ}$
$\mathrm{Rb}_{2} \mathrm{CoCl}_{4}{ }^{(c)}$	$P n m a$	9.272	7.283	12.723	
$\mathrm{Cs}_{2} \mathrm{CoCl}_{4}{ }^{(d)}$	Pnma	9.737	7.792	12.972	
$\mathrm{~K}_{2} \mathrm{ZnCl}_{4}{ }^{(e)}$	Pma2	26.70	12.26	7.28	
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZnCl}_{4}{ }^{(f)}$		9.20	7.17	12.56	

(a) Robinson (1958). (b) This work. (c) Amit, Horowitz \& Makovsky (1972). (d) Poray-Koshits (1954). (e) Klug \& Sears (1945). (f) Lamotte \& Vermeire (1975).
temperature factors are unusually high; this probably indicates that there is some disorder in these compounds.
In Table 6 some other compounds with $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$-like structures are listed. The structure of $\mathrm{K}_{2} \mathrm{ZnCl}_{4}$ is not yet known, but the agreement between the axes of this compound and orthorhombic $\mathrm{K}_{2} \mathrm{CoCl}_{4}$ suggests that the structures may be almost the same.

The authors wish to thank Drs A. J. de Kok and R. A. G. de Graaff for their aid in interpreting the X-ray data, Dr W. J. Crama for the thermal analysis and Professor Dr C. Romers for valuable discussions.

References

Amit, M., Horowitz, A. \& Makovsky, J. (1972). Israel J. Chem. 10, 715-719.
Graaff, R. A. G. de (1973). Acta Cryst. A 29, 298-301.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-151. Birmingham: Kynoch Press.
Klug, H. P. \& Sears, G. W. Jr (1945). J. Amer. Chem. Soc. 67, 878.
Lamotte, J. \& Vermeire, M. (1975). J. Appl. Cryst. 8, 689693.

Poray-Koshits, M. A. (1954). Trud. Inst. Kristallogr. Akad. Nauk SSSR, 10, 117-135.
Robinson, M. T. (1958). J. Phys. Chem. 62, 925-928.
Seifert, H. J. (1961). Z. anorg. allgem. Cñem. 307, 137-144

Acta Cryst. (1976). B32, 3328

Hydrogen-Bond Motifs of Carboxylic Acids: the $\boldsymbol{\alpha}$-Form of Monochloroacetic Acid

By J.A. Kanters and G. Roelofsen
Structural Chemistry Group, Rijksuniversiteit Utrecht, Padualaan 8, Utrecht, The Netherlands

(Received 24 May 1976; accepted 5 June 1976)

Abstract

C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Cl}\), monoclinic, $P 2_{1} / c ; a=5 \cdot 380$ (1), $b=19.150$ (4), $c=7.860$ (2) $\AA, \beta=109.14$ (10) $; ~ Z=8$, $D_{c}=1.64 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure consists of centrosymmetric tetramers formed by hydrogen bonding between carboxyl groups of the two independent molecules. Corresponding bond distances and angles involving non-hydrogen atoms of the independent molecules are very similar; their conformations differ: one molecule is planar, the other has a dihedral angle of $20 \cdot 3^{\circ}$.

Introduction. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Cl}$ exists in three distinct crystalline varieties (Aumeras \& Minangoy, 1948). The α-form is the stable modification at ambient conditions with a m.p. of $64^{\circ} \mathrm{C}$, the β - and γ-forms are metastable with m.p.'s of 54 and $51^{\circ} \mathrm{C}$ respectively. From IR and Raman spectroscopy it was concluded that the metastable β-form crystallizes in the cyclic centrosymmetric hydrogen-bonded dimer type (Sinha, Katon \& Jakobsen, 1975), whereas the results for the α-form are inconsistent with a dimer structure and strongly indicate a hydrogen-bond motif with a polymeric nature (Sinha, Katon \& Jakobsen, 1974). The analysis of the α-form was performed to elucidate the hydrogen-bond motif.

Prismatic crystals were obtained by sublimation in vacuo. A crystal $0.3 \times 0.4 \times 0.5 \mathrm{~mm}$ was selected and

Table 1. Fractional coordinates $\left(\times 10^{4}\right.$ for Cl, O and $\mathrm{C} ; \times 10^{3}$ for H$)$ and anisotropic thermal parameters $\left(\times 10^{4}\right)$ of the non-hydrogen atoms
The estimated standard deviations are given in parentheses and refer to the last decimal position of respective values. The anisotropic temperature factor is of the form $\exp \left[-2 \pi^{2}\left(a^{* 2} h^{2} U_{11}+\ldots+2 b^{*} c^{*} k l U_{23}\right)\right]$.

Molecule $1 \times U_{22} U_{33}$									
Cl	-379 (2)	6706 (1)	9904 (1)	722 (6)	560 (5)	498 (5)	-116 (4)	353 (4)	-107 (4)
$\mathrm{O}(1)$	3057 (5)	6596 (1)	6272 (3)	625 (15)	415 (14)	541 (14)	-97 (11)	334 (12)	-61 (10)
$\mathrm{O}(2)$	782 (5)	5806 (1)	7228 (4)	706 (16)	340 (11)	735 (17)	- 110 (11)	454 (14)	-89 (11)
C(1)	1669 (6)	6384 (2)	7276 (4)	426 (15)	345 (15)	379 (15)	11 (12)	158 (13)	21 (12)
C(2)	1461 (9)	6961 (2)	8517 (5)	841 (29)	394 (18)	511 (21)	-71 (18)	373 (20)	-21 (15)
H(1)	322 (7)	713 (2)	925 (5)	3.8					
H(2)	62 (7)	730 (2)	786 (5)	3.8					
H(3)	302 (7)	631 (2)	549 (5)	3.7					
Molecule 2									
Cl	-6497 (2)	3409 (1)	6768 (1)	529 (5)	422 (4)	696 (6)	-115 (4)	274 (4)	-59 (4)
$\mathrm{O}(1)$	-3047 (5)	5177 (1)	8216 (3)	596 (15)	518 (14)	589 (15)	-187(12)	361 (12)	- 190 (12)
$\mathrm{O}(2)$	-2747 (5)	4434 (1)	6128 (3)	564 (14)	448 (13)	564 (14)	-96(11)	350 (12)	-119 (11)
C(1)	-3783 (6)	4623 (2)	7186 (4)	369 (15)	396 (15)	402 (15)	-6 (12)	166 (13)	2 (12)
$\mathrm{C}(2)$	-6106 (7)	4282 (2)	7501 (6)	499 (20)	396 (17)	659 (23)	-66 (15)	324 (18)	-70 (16)
H(1)	-611 (6)	430 (2)	873 (5)	$3 \cdot 6$					
H(2)	-741 (7)	451 (2)	688 (5)	$3 \cdot 6$					
H(3)	-157 (7)	546 (2)	806 (5)	$3 \cdot 9$					

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31934 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

